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BIASES

- Unwanted patterns
- Both in data and model predictions

- Based on protected attributes
- Gender, race, age
- Inherent and immutable

- Quantifiable
- Group bias metrics



BIAS SOURCES
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Figure 1: Bias source in the machine learning pipeline’

Harini Suresh and John Guttag. “A Framework for Understanding Sources of Harm throughout the Machine
Learning Life Cycle”. In: Equity and Access in Algorithms, Mechanisms, and Optimization. EAAMO '21: Equity and
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FACIAL EXPRESSION RECOGNITION




WHAT IS FACIAL EXPRESSION RECOGNITION?

angry disgust fear happy neutral surprise

Zle]
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Figure 2: A sample of FER2013/FER+, a popular FER dataset?.

’Emad Barsoum et al. “Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label
Distribution”. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction. ICMI "16: 8
INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION. Tokyo Japan: ACM, Oct. 31, 2016, pp. 279-283. ISBN:


https://doi.org/10.1145/2993148.2993165

FER AND FER-RELATED KNOWN BIASES

Gender and skin tone (Fitzpatrick Skin Type) in gender
classification?

FER research models*: capacitism, age, race and gender
Commercial FER systems®: age, race and gender

'Joy Buolamwini and Timnit Gebru. “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender
Classification”. In: Proceedings of the 1st Conference on Fairness, Accountability and Transparency. Ed. by
Sorelle A. Friedler and Christo Wilson. Vol. 81. Proceedings of Machine Learning Research. PMLR, Feb. 23-24, 2018,
pp. 77-91

Jacqueline J. Greene et al. “The Spectrum of Facial Palsy: The MEEI Facial Palsy Photo and Video Standard Set”. In:
The Laryngoscope 1301 (2020), pp. 32-37. 1SSN: 1531-4995. pol: 10.1002/lary.27986; Tian Xu et al. “Investigating
Bias and Fairness in Facial Expression Recognition”. In: Computer Vision — ECCV 2020 Workshops. Ed. by
Adrien Bartoli and Andrea Fusiello. Cham: Springer International Publishing, 2020, pp. 506-523. ISBN:
978-3-030-65414-6. DOI: 10.1007/978-3-030-65414-6\_35

Eugenia Kim et al. “Age Bias in Emotion Detection: An Analysis of Facial Emotion Recognition Performance on
Young, Middle-Aged, and Older Adults”. In: Proceedings of the 2021 AAAI/ACM Conference on Al, Ethics, and Society.
New York, NY, USA: Association for Computing Machinery, July 21, 2021, pp. 638-644. ISBN: 978-1-4503-8473-5;
Khurshid Ahmad et al. “Comparing the Performance of Facial Emotion Recognition Systems on Real-Life Videos:
Gender, Ethnicity and Age”. In: Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1. Ed. by
Kohei Arai. Vol. 358. Cham: Springer International Publishing, 2022, pp. 193-210. I1SBN: 978-3-030-89905-9
978-3-030-89906-6. DOI: 10.1007/978-3-030-89906-6\_14
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FER DATASETS

Shortname Year Collection Images Videos Subjects
POFA 1976 Lab 110 - 16
JACFEE 1988 Lab 56 - 56
AR-Face 1998 Lab 4000 - 126
JAFFE 1998 Lab 213 - 10
KDEF 1998 Lab 4900 - 70
CcK 2000 Lab 8795 486 97
CK+ 2010 Lab 10727 593 123
MUG 2010 Lab 70654 - 52
Multi-PIE 2010 Lab 750000 - 337
RaFD 2010 Lab 8040 - 67
SFEW 2011 ITW 1766 - 330
FER2013 2013 ITW 32298 - -
WSEFEP 2014 Lab 210 - 30
ADFES 2016 Lab - 648 22
FERPlus 2016 ITW 32298 - -
Aff-Wild2 2017 ITW - 558 -
AffectNet 2017 ITW 291652 - -
ExpW 2017 ITW 91793 - -
RAF-DB 2017 ITW 29672 - -
CAER-S 2019 ITW 70000 -

SEWA 2019 1ITW - 199 398
MMAFEDB 2020 ITW 128000 - -
NHFIER 2020 ITW 5558 - -




TYPES OF BIAS

Representational bias

Data proportion

White 4
Black 4
East
Asian

Indian 4

Middle
Eastern

Figure 3: Apparent race
distribution in FER+.

Iris Dominguez-Catena, Daniel Paternain, and Mikel Galar. “Assessing Demographic Bias Transfer from Dataset to
Model: A Case Study in Facial Expression Recognition”. In: Proceedings of the Workshop on Artificial Intelligence
Safety 2022 (AlSafety 2022). Thirty-First International Joint Conference on Artificial Intelligence and the Twenty-Fifth
European Conference on Artificial Intelligence (IJCAI-ECAI-2022). Vienna, Austria, July 24-25, 2022)

1



TYPES OF BIAS

Representational bias

0.7
0.6
0.6 4
= S o0s
505 £
B g
2 0.44 g 04
S 3
203 g 03
K =
8 g
0.2 £02
0.1 &
0.1
0.0 T T T T T T T
EOR N1 B B B 004
= 23 L = X Bl R >
= 5 22 /A < = =k &
Sz R 8= &

Figure 3: Apparent race Figure 4: Apparent per-label
distribution in FER+. gender distribution in FER+.

1



TYPES OF BIAS

Representational bias Stereotypical bias
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BIAS METRICS

Representational

— T~

Richness Evenness Dominance ComTined

Effective Number of Species
Simpson Index

Simpson’s Reciprocal
Simpson’s Index of Diversity
Shannon Entropy

Imbalance Ratio
Berger-Parker Index

Richness ‘ Shannon Evenness Index

Normalized Standard Deviation

Stereotypical

Global Local
Cramer's V Normalized Pointwise Mutual Information
Tschuprow's T Ducher's Z
Pearson’s Contingency Coefficient

Theil's U
Normalized Mutual Information

“Iris Dominguez-Catena, Daniel Paternain, and Mikel Galar. Metrics for Dataset Demographic Bias: A Case Study on
Facial Expression Recognition. Mar. 28, 2023. pol: 10.48550/arXiv.2303.15889. arXiv: 2303.15889 [cs]. URL:
http://arxiv.org/abs/23603.15889 (visited on 05/26/2023). preprint


https://doi.org/10.48550/arXiv.2303.15889
https://arxiv.org/abs/2303.15889
http://arxiv.org/abs/2303.15889

METHODOLOGY

1. Dataset preprocessing, homogenize images and labels

2. Demographic analysis of the datasets
- FairfFace®

3. Measure bias with all metrics
4. Discard redundant metrics, prioritizing interpretable metrics

Kimmo Karkkainen and Jungseock Joo. “FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for
Bias Measurement and Mitigation”. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). 2021
IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA: IEEE, Jan. 2021, pp. 1547-1557
ISBN: 978-1-66540-477-8. DOI: 10.1109/WACV48630.2021.00159

13


https://doi.org/10.1109/WACV48630.2021.00159

REPRESENTATIONAL BIAS




METRIC COHERENCE

Agreement, mean of the components
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Figure 5: Spearman’s p correlation between representational bias
metrics

15

’Doming atena, Pate




BEST CHOICES

- General representational
- Effective Number of Species (ENS)

- Evenness between represented groups
- Shannon Evenness Index (SEl)

- Good approximation: Dominance
- Berger-Parker Index (BP)

16



STEREOTYPICAL BIAS




STEREOTYPICAL BIAS, AN EXAMPLE |
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STEREOTYPICAL BIAS, AN EXAMPLE 11
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Figure 7: Contingency tables of a datasets without stereotypical bias
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STEREOTYPICAL BIAS, AN EXAMPLE IlII
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Figure 8: Real contingency table of a FER, with stereotypical bias
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METRIC COHERENCE

Agreement, mean of the components
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Figure 9: Spearman’s p correlation between stereotypical bias

metrics
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BEST CHOICE

- Stereotypical bias (global)
- Cramer's V (¢¢)

- Stereotypical bias (local)
- Ducher's Z (2)
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METRICS IN ACTION




DATASET COMPARISON
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Figure 10: Representational bias (ENS), evenness (SEI) and
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DATASET COMPARISON
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Figure 11: Representational bias (ENS), evenness (SEI) and
stereotypical bias (¢¢) of lab (left) and ITW-I (right) datasets.
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LOCAL STEREOTYPICAL BIAS

g = & = - g =
4
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Figure 12: Local stereotypical bias for gender in Affectnet, Fer+,
NHFIER y Raf-DB (Ducher’s Z). (F: Female, M: Male)
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LOCAL STEREOTYPICAL BIAS
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WHAT'S NEXT?




DATASET COMPARISON

Step 1: Demographic profiling Step 2: Demographic similarity
=
Dataset
Auxdliary model // Demographic axis
profile
9 D [0.1]
Similarity (DS)
Demography
classifier
Demographic prafile . Reference demographic
b ° ; axis profile
(multiple axes)
What to use DSAP for
2. Bias measurement
1 Demographic dataset comparison (representational, evenness, and stereotypical)  3-Demographic dataset shift
Amount of
i Amount of demographic
Demographic demographic bias dataset shift
similarity —> o1 —> [01]
Dataset 1 —>[01] Dataset 1 — [01] Train partition
—>[01]
Dataset 2 Generated ideal Test / deployment
population partition

Iris Dominguez-Catena, Daniel Paternain, and Mikel Galar. DSAP: Analyzing Bias Through Demographic
Comparison of Datasets. Dec. 22, 2023. pOl: 10.48550/arXiv.2312.14626. arXiv: 2312.14626 [cs]. URL:
http://arxiv.org/abs/2312.14626 (visited on 01/24/2024). preprint
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DATASET COMPARISON
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"Dowr'mgﬂv Catena, Paternain, and Galar, DSAP
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STEREOTYPICAL BIAS TRANSFERENCE

Biased on angry
Female —1.00 Female 0.00 Female +1.00

angry Male 81.25+2.61 76.30 +3.40 55.87 +2.24
Female 51.89 £3.77 73.21+333  76.04+1.99
Diff —29.36+£4.59 —3.10+4.76 20.17 £2.99

Angry

Balanced

N
o
1

Biased on angry

Recall diff (F-M)

T T T T T
-1.0 -0.5 0.0 0.5 1.0
Induced bias

Iris Dominguez-Catena, Daniel Paternain, and Mikel Galar. “Gender Stereotyping Impact in Facial Expression
Recognition”. In: Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Vol. 1752
Cham: Springer Nature Switzerland, 2023, pp. 9-22. ISBN: 978-3-031-23617-4 978-3-031-23618-1. DO
10.1007/978-3-031-23618-1_1
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BIAS IN OTHER PROBLEMS




Al IN HIRING: AMAZON

Dominated by men

Top Us. tech companies have ye to close the gender gap in hirng,  disparity
gtechnical saff

“women's" until the company discovered the problem.

GLOBAL HEADCOUNT

msle B remale

Amazon scraps secret Al recruiting tool that

vicrozot

showed bias against women
EMPLOYEES IN TECHNICAL ROLES
By Jeffrey Dastin 8 MIN READ f v rosle

Google

vicrozot

SAN FRANCISCO (Reuters) - Amazon.com Inc’s AMZN.O machine-learning h; o oo

specialists uncovered a big problem: their new recruiting engine did not like

women.

’https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MKO8G
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RECIDIVISM PREDICTION: COMPASS

Two Petty Theft Arrests

Subsequent Offenses

BRISHA BORDEN
3 HIGHRISK LOW RISK 3 HIGHRISK

Prediction Fails Differently for Black Defendants
WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

https:
//www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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GENERATIVE Al: STABLE DIFFUSION

Allbut twoimagesfor
Porcoived Gendor: MNan WWoman - Ambiguous the keyword "Enginoer™ ~
were of perceived men AN
High-paying occupations \
\
ARCHTTECT LANYER POLITICTAN DoCTOR cEo JunGE ENGINEER

Low-paying occupations
JANTTOR DISHWASHER FAST-FOOD ORKER CASHIER TEACHER SOCTAL WORKER HOUSEKEEPER

https://www.bloomberg.com/graphics/2023-generative-ai-bias/
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GENERATIVE Al: STABLE DIFFUSION

Stable Diffusion Perp Criminal

yp
Composite average of all images
INMATE DRUG DEALER TERRORIST

- -
viy|wiv

Distribution of skin tones

®https://www.bloomberg.com/graphics/2023-generative-ai-bias/
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THAT'S ONLY THE BEGINNING

ChatGPT’s political biases’

Al agents and bias: Tay.ai 8

Military Al °

Medical Al 1°

Social networks and recommendation algorithms ™

Fabio Motoki, Valdemar Pinho Neto, and Victor Rodrigues. “More Human than Human: Measuring ChatGPT
Political Bias”. In: Public Choice (Aug. 2023). 1SsN: 1573-7101. pol: 10.1007/511127-023-01097-2

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist

https://www.euronews.com/next/2022/10/17/
israel-deploys-ai-powered-robot-guns-that-can-track-targets-in-the-west-bank

Ohttps://www.scientificamerican.com/article/
racial-bias-found-in-a-major-health-care-risk-algorithm/

"https://www.adl.org/resources/report/exposure-alternative-extremist-content-youtube
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CONCLUSION




CONCLUSION

- |As are not perfect, "neutral” or fair

- They can replicate and worsen our biases, especially through
data
- Measuring these biases is vital to tackle them
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FORMULAS




Effective Number of Species (ENS)™:

ENS(X) =exp [ = _ pglnpg
gei

Adjusted entropy. Effective number of represented group.

"?Lou Jost. “Entropy and Diversity”. In: Oikos 113.2 (May 2006), pp. 363-375. 1SSN: 00301299. DOI:
10.1111/7.2006.0030-1299.14714.x

4
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Shannon Evenness Index (SEI)":

SEI(X) = In(Hé&) : (2)

where H(X) is Shannon entropy.

Group evenness.

"E.C. Pielou. “The Measurement of Diversity in Different Types of Biological Collections”. In: Journal of Theoretical
Biology 13 (Dec. 1966), pp. 131-144. 1SSN: 00225193. DOI: 10.1016/0022-5193(66)96013-0

4


https://doi.org/10.1016/0022-5193(66)90013-0

Berger-Parker Index (BP)'™:

max ng
gei

BP(X) = *—

Ratio between the most represented group and the whole
population.

! Wolfgang H. Berger and Frances L. Parker. “Diversity of Planktonic Foraminifera in Deep-Sea Sediments”. In:
Science 168.3937 (June 12, 1970), pp. 1345-1347. 1SSN: 0036-8075, 1095-9203. DOI:
10.1126/science.168.3937.1345
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https://doi.org/10.1126/science.168.3937.1345

Cramer's V (¢c)”

) (Ngny — ngny)z
X (X Z Z o ngny (4)
gei yey n
X*(X)/n

oc(X) = min(jG[ = 1,[Y[ = 1)’ ©)

"“Harald Cramér. “Chapter 21. The Two-Dimensional Case”. In: Mathematical Methods of Statistics. Princeton
Mathematical Series 9. Princeton: Princeton university press, 1991, p. 282. ISBN: 978-0-691-08004-8
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Ducher’s Z (2)'®:

_ Dory=Paby ~ _
min[pg.py]—Paby if pgay — Pgpy >0

2(%.9.y) = pgpy—[:ﬁgi[?){jpgfipw] if pgay — Pgpy < 0 (6)
0 otherwise.

1°M. Ducher et al. “Statistical Relationships between Systolic Blood Pressure and Heart Rate and Their Functional
Significance in Conscious Rats”. In: Medical & Biological Engineering & Computing 32.6 (Nov. 1994), pp. 649-655.
ISSN: 0140-0118, 1741-0444. DOI: 10.1007/BF02524241.
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